GCE A LEVEL MARKING SCHEME

SUMMER 2018

A LEVEL
CHEMISTRY - COMPONENT 2 A410U20-1

INTRODUCTION

This marking scheme was used by WJEC for the 2018 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

COMPONENT 2: ORGANIC CHEMISTRY AND ANALYSIS

MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink
One tick must equate to one mark, apart from extended response questions where a level of response mark scheme is applied.
Question totals should be written in the box at the end of the question.
Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.
Extended response questions
A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules
All work should be seen to have been marked.
Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.
Crossed out responses not replaced should be marked.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao	$=\quad$ correct answer only
ecf	$=\quad$ error carried forward

bod $=$ benefit of doubt
Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

Section A

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
5				 (1) it has a C-O bond (at $1000-1300 \mathrm{~cm}^{-1}$) but no O-H bond (at 2500$3550 \mathrm{~cm}^{-1}$) so it cannot be an alcohol (1)	1	1		2		
6	(a)			1			1			
	(b)		```add (aqueous) bromine (1) decolourised and white precipitate (1) or add (aqueous) iron(III) chloride (1) purple colour (1)```	2			2		2	
7			decarboxylation (1) benzene (1)		2		2			

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
8				only compound \mathbf{N} contains an $\mathrm{O}-\mathrm{H}$ group that can hydrogen bond to other molecules (hence stronger intermolecular forces, more energy needed, hence higher boiling temperature) (1) e.g.	1	1		2		
9			award (1) for any of following $\begin{aligned} & \mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2} \\ & \mathrm{H}_{3} \mathrm{C}-\mathrm{N}(\mathrm{H})-\mathrm{N}(\mathrm{H})-\mathrm{CH}_{3} \\ & \left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}-\mathrm{NH} \end{aligned}$		1		1			
			Section A total	7	8	0	15	0	2	

Section B

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
10	(a)			orange / brown precipitate (1) given by an aldehyde / CHO group (1)	2			2		2
	(b)	(i)	0.075 mol of ethanoic anhydride (1) there are 5 alcohol groups in glucose (and they react in a 1:1 ratio with ethanoic anhydride) (1)		2		2			
		(ii)	steam / boiling water bath / heating mantle / should be used to heat the mixture (1) condenser should be attached vertically to the flask so that the cold water jacket condenses the vapours and returns them to the flask (1)		2		2		2	
		(iii)	the compound is precipitated when the mixture is poured into a large excess of water	1			1		1	
		(iv)	so that the maximum amount of glucose pentaethanoate can crystallise out on cooling		1		1		1	
		(v)	a lower value indicates that the compound is impure (1) award (1) for any of following - it could be contaminated with glucose / damp - some ethanoic anhydride may remain		1	1	2		1	

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
(c)			0.200 mol of glucose gives 0.400 mol of ethanol (1) 0.400 mol ethanol in $2.03 \mathrm{dm}^{3}$ 18.4 g in $2.03 \mathrm{dm}^{3}$ (1) therefore concentration of glucose is $9.06 \mathrm{~g} \mathrm{dm}^{-3}$		3		3	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
(d)	(i)	percentage of compound \mathbf{A} decreases rapidly at the start but then is removed more slowly as the reaction proceeds			1	1			
	(ii)	proportion of compound B shows a steady rise as time increases but the proportion of compound \mathbf{C} remains very small / rises very slowly			1	1			
	(iii)	$\frac{0.18 \times 100}{0.20}=90$		1		1			
	(iv)	compound C (1) as $E=h f$ and $c=f \lambda$ or $E=h c / \lambda \quad$ etc (1)		2		2	1		
	(v)	award (1) for either of following - does not use a toxic solvent - solvent does not harm the environment		1		1			
		Question 10 total	3	13	3	19	3	7	

5-6 marks

Full explanation of the responses for all methods
The candidate constructs a relevant, coherent and logically structured account including all key elements of the indicative content. A sustained and substantiated line of reasoning is evident and scientific conventions and vocabulary are used accurately throughout.

3-4 marks

A number of correct points relating to most responses but they lack some relevant detail
The candidate constructs a coherent account inc/uding many of the key elements of the indicative content. Some reasoning is evident in the linking of key points and use of scientific conventions and vocabulary is generally sound.

1-2 marks

Attempt to explain some responses but there is a significant lack of detail

The candidate attempts to link at least two relevant points from the indicative material. Coherence is limited by omission and/or inclusion of irrelevant materials. There is some evidence of appropriate use of scientific conventions and vocabulary.

0 marks

The candidate does not make any attempt or give an answer worthy of credit.

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
(b)	(i)			1			1		
	(ii)	the acid acts as a dehydrating agent (1) water can be eliminated from either side of the $-\mathrm{CH}(\mathrm{OH})$ - group (1)	1	1		2		1	
	(iii)	nickel / platinum (1) catalyst and reactants / products in different physical states (1)	2			2			
	(iv)	fractional distillation	1			1		1	

Question		Marking details	Marks available					
			A01	AO2	AO3	Total	Maths	Prac
(v)		award (1) each for up to FOUR of following - as the chain length increases so does the boiling temperature - as the isomers become more branched the boiling temperatures decrease - the rise in boiling temperature is due to increased intermolecular forces - more energy is needed to separate the molecules [or converse] - the branched isomers have weaker intermolecular bonding	1	2	1	4		
(vi)	1				1	1		
	II	award (1) for any of following - octane - 2,3-dimethylhexane - 3-methylheptane accept a correct unambiguous formula			1	1		
		Question 11 total	7	5	6	18	0	7

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
12	(a)			partial and full charges (1) curly arrows and lone pair on chloride ion (1)		2		2		
	(b)		add bromine / aqueous bromine (1) alkene decolourised and alkane unaffected (1) OR add acidified KMnO_{4} (1) alkene decolourised and alkane unaffected (1) allow use of neutral / alkaline KMnO_{4} with appropriate answers	2			2		2	
	(c)	(i)	${ }^{-} \mathrm{OH}$	1			1			
		(ii)	award (1) each for any TWO of following - percentage yield - availability of starting material / catalyst - atom economy - cost of starting material / catalyst - suggestion of an economic way of running the reaction at a high temperature - isolation of product from starting materials / catalyst			2	2			

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
(d)	(i)	1			2	2		4		1
		II	tin / iron and concentrated hydrochloric acid	1			1		1	
		III		1	1		2		1	
	(ii)	1	add $\mathrm{NaHCO}_{3} / \mathrm{Na}_{2} \mathrm{CO}_{3}$ (1) ethanoic acid produces effervescence / gives of carbon dioxide, phenol does not (1)	2			2		2	
		II	the anion formed is more stable than the phenoxide ion / the $\mathrm{O}-\mathrm{H}$ bond is weakened by the presence of the NO_{2} electron withdrawing group			1	1			
			Question 12 total	9	5	3	17	0	7	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
13	(a)			they contain both an acidic and alkaline functional groups	1			1		
	(b)	(i)	award (1) for any of following - the burette had been rinsed with water and this was not replaced entirely with sodium hydroxide - inadequate shaking - rough titration / overshot end point	1			1		1	
		(ii)	$\begin{align*} & \text { concordant titres chosen }-35.90,36.00 \text { and } 36.10 \mathrm{~cm}^{3} \\ & \text { mean titre }=36.00 \mathrm{~cm}^{3} \tag{1}\\ & \mathrm{n}(\mathrm{NaOH})=\frac{36.00 \times 0.105}{1000}=0.00378 \tag{1}\\ & 1: 1 \text { ratio therefore number of moles of the amino acid is also } 0.00378 \\ & 250 \mathrm{~cm}^{3} \text { contain } 0.0378 \mathrm{~mol} \\ & M_{\mathrm{r}} \text { of the amino acid }=\frac{4.95}{0.0378}=131 \tag{1} \end{align*}$		5		5	1 1		
		(iii)	$\begin{align*} & -\mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{COOH} \quad \text { ' } \mathrm{M}_{\mathrm{r}}^{\prime}=74 \quad \text { (1) } \\ & \text { 'M } \mathrm{M}_{\mathrm{r}}^{\prime} \text { of chain is } 131-74=57 \quad \text { ecf possible from part (ii) } \\ & \text { so must be } \mathrm{C}_{4} \mathrm{H}_{9} \\ & \text { formula must be } \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{COOH} \text { (1) } \tag{1} \end{align*}$			2	2			

Question			Marking details	Marks available					
				A01	AO2	AO3	Total	Maths	Prac
(c)	(i)		compound \mathbf{T} as this is the only one that contains a chiral centre / asymmetric carbon atom		1		1		
	(ii)		only compound \mathbf{T} would show an $\mathrm{N}-\mathrm{H}$ stretching frequency at $3300-3500 \mathrm{~cm}^{-1}$		1		1		
	(iii)		compound S could only form one dipeptide via its COOH group, as it does not contain an $\mathrm{N}-\mathrm{H}$ bond			1	1		
(d)	(i)		the reaction proceeds via secondary carbocations which are more stable / have lower activation energies accept explanation using Markovnikov's rule			1	1		
	(ii)	1	bromine is more electronegative than carbon / has greater electron attracting power than carbon (so is δ-) accept converse argument	1			1		
		II	it acts as a base / nucleophile	1			1		
	(iii)		e.g.		1		1		
			Question 13 total	4	8	4	16	2	1

Question				Marking details	Marks available						
				A01	AO2	AO3	Total	Maths	Prac		
14	(a)	(i)			award (1) for up to FOUR of following - benzene exists as a six membered (planar) ring - it has a molecular formula $\mathrm{C}_{6} \mathrm{H}_{6}$ - it has a delocalised electron structure / π cloud - stability is lost if addition occurs, hence substitution is the usual reaction	4			4		
		(ii)	1	65.(0) (2) if answer incorrect award (1) for M_{r} values of butan-1,4-dial [86.06], pyrrole [67.05] and ammonia [17.03] ecf possible from incorrect M_{r} values		2		2	1		
			II				1	1			
	(b)	(i)		```\(14.8 \quad(2)\) if answer incorrect award (1) for mass of methylbenzene \(=92.1 \times 0.430=39.6 \mathrm{~g}\) ecf possible from incorrect mass of methylbenzene```			2	2	1		

Question				Marking details	Marks available					
					A01	AO2	AO3	Total	Maths	Prac
15	(a)	(i)		award (1) for each of following - add compound \mathbf{W} to aqueous sodium hydroxide (in the presence of a co-solvent) and warm - acidify the mixture with (aqueous) nitric acid - add silver nitrate - white precipitate (of AgCl) is seen (precipitate dissolves in aqueous ammonia)	2	2		4		4
		(ii)		M_{r} is 141 (2) if answer incorrect award (1) for mass of chlorine in compound $=3.19 \mathrm{~g}$ ecf possible from incorrect mass of chlorine		2		2	1	
		(iii)		there are no protons bonded to the central carbon atom in either compound and therefore the splitting pattern will not be affected by the chlorination			1	1		
		(iv)		use of the Data Booklet to identify protons next to $\mathrm{C}=\mathrm{O}$ at 2.0 to 3.0 and protons at 0.1 to 2.0 (1) the spectrum consists of a quartet $\left(\mathrm{CH}_{2}\right)$ and a triplet $\left(\mathrm{CH}_{3}\right)$ these are like to be ethyl groups and the ketone is probably $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}_{3}$		1	2	3		

COMPONENT 2: ORGANIC CHEMISTRY AND ANALYSIS
SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	AO1	AO2	AO3	Total	Maths	Prac
Section A	7	8	0	15	0	2
10	3	13	3	19	3	7
11	7	7	3	17	0	7
12	9	5	3	17	0	7
13	4	6	9	16	2	3
14	2	9	5	16	10	3
Totals	36					3

A410U20 Eduqas GCE A Level Chemistry Component 2 MS Summer 2018/ED

